Industry use-cases of Azure Kubernetes Service

Azure Kubernetes Service (AKS) is the quickest way to use Kubernetes on Azure. Azure Kubernetes Service (AKS) manages your hosted Kubernetes environment, making it quick and easy to deploy and manage containerized applications without container orchestration expertise. It also eliminates the burden of ongoing operations and maintenance by provisioning, upgrading, and scaling resources on-demand, without taking your applications offline. Azure DevOps helps in creating Docker images for faster deployments and reliability using the continuous build option.

One of the biggest advantages to use AKS is that instead of creating resources in the cloud you can create resources and infrastructure inside Azure Kubernetes Cluster through Deployments and Services manifest files.

What is Kubernetes?

Kubernetes is an open-source container-orchestration system for automating computer application deployment, scaling, and management. It was originally designed by Google and is now maintained by the Cloud Native Computing Foundation. It aims to provide a “platform for automating deployment, scaling, and operations of application containers across clusters of hosts”. It works with a range of container tools and runs containers in a cluster, often with images built using Docker.

Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services, that facilitates both declarative configuration and automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely available.

Why you need Kubernetes and what it can do

Containers are a good way to bundle and run your applications. In a production environment, you need to manage the containers that run the applications and ensure that there is no downtime. For example, if a container goes down, another container needs to start. Wouldn’t it be easier if this behavior was handled by a system?

That’s how Kubernetes comes to the rescue! Kubernetes provides you with a framework to run distributed systems resiliently. It takes care of scaling and failover for your application, provides deployment patterns, and more. For example, Kubernetes can easily manage a canary deployment for your system.

Kubernetes provides you with:

  • Service discovery and load balancing Kubernetes can expose a container using the DNS name or using their own IP address. If traffic to a container is high, Kubernetes is able to load balance and distribute the network traffic so that the deployment is stable.
  • Storage orchestration Kubernetes allows you to automatically mount a storage system of your choice, such as local storage, public cloud providers, and more.
  • Automated rollouts and rollbacks You can describe the desired state for your deployed containers using Kubernetes, and it can change the actual state to the desired state at a controlled rate. For example, you can automate Kubernetes to create new containers for your deployment, remove existing containers and adopt all their resources to the new container.
  • Automatic bin packing You provide Kubernetes with a cluster of nodes that it can use to run containerized tasks. You tell Kubernetes how much CPU and memory (RAM) each container needs. Kubernetes can fit containers onto your nodes to make the best use of your resources.
  • Self-healing Kubernetes restarts containers that fail, replaces containers, kills containers that don’t respond to your user-defined health check, and doesn’t advertise them to clients until they are ready to serve.
  • Secret and configuration management Kubernetes lets you store and manage sensitive information, such as passwords, OAuth tokens, and SSH keys. You can deploy and update secrets and application configuration without rebuilding your container images, and without exposing secrets in your stack configuration.

Azure Kubernetes Service

Deploy and manage containerized applications more easily with a fully-managed Kubernetes service. Azure Kubernetes Service (AKS) offers serverless Kubernetes, an integrated continuous integration and continuous delivery (CI/CD) experience, and enterprise-grade security and governance. Unite your development and operations teams on a single platform to rapidly build, deliver and scale applications with confidence.

Bosch-Invented for Life

When Robert Bosch GmbH set out to solve the problem of drivers going the wrong way on highways, the goal was to save lives. Other services like this existed in Germany, but precision and speed cannot be compromised. Could Bosch get precise enough location data — in real time — to do this? The company knew it had to try.

The result is the wrong-way driver warning (WDW) service and software development kit (SDK). Designed for use by app developers and original equipment manufacturers (OEMs), the architecture pivots on an innovative map-matching algorithm and the scalability of Microsoft Azure Kubernetes Service (AKS) in tandem with Azure HDInsight tools that integrate with the Apache Kafka streaming platform.

AKS also offered the simplicity of a managed Kubernetes service in the cloud. It provided the elastic provisioning that Bosch wanted, without the need to manage its own infrastructure. In addition, the developers did not have to rethink all their design decisions. Instead, they could take the core business logic developed on-premises using the open-source tools they knew and run the solution virtually as-is, within a faster infrastructure with a worldwide reach. The developers can deploy self-managed AKS clusters as needed, and they get the benefit of running their services within a secured network environment.

In addition, by running their solution on Azure and AKS, the average time to calculate whether a driver is going the wrong way could be improved to approximately 60 milliseconds.

How the solution works

The wrong-way driver warning solution runs as a service on Azure and provides an SDK. Service providers, such as smartphone app developers and OEM partners, can install the WDW SDK to make use of the service within their products. The SDK maintains a list of hotspots within which GPS data is collected anonymously. These hotspots include specific locations, such as segments of divided highways and on-ramps. Every time a driver enters a hotspot, the client generates a new ID, so the service remains anonymous.

Today the solution ingests approximately 6 million requests per day from devices emitting GPS data or from a partner’s back-end system. Anyone can download the SDK and try it out. The APIs grant a free request quota for test accounts. For production use, service providers request permission and then use the WDW SDK to register themselves for their own API authentication keys via the Azure API Management developer portal. Within their application, they configure the service’s endpoints by authenticating with their key for ingress and push notifications. The WDW service on Azure does the rest.

When a driver using a WDW-configured app or in-car system enters a hotspot, the WDW SDK begins to collect GPS signals and sensor events, such as acceleration and rotational data and heading information. These data points are packaged as observations and sent in the frequency of 1 Hertz (Hz) — one event per second — via HTTP to the WDW service on Azure, either directly or to the service provider’s back end, and then to Azure. The SDK supports both routes so that service providers stay in charge of the data that is sent to the WDW system.

If the WDW service determines that the driver is going the wrong way within a hotspot, it sends a notification to the originating device and to other drivers in the vicinity who are also running an app with the WDW SDK.


Azure Kubernetes Service (AKS) reduces the complexity and operational overhead of managing a Kubernetes cluster by offloading much of that responsibility to Azure. With Azure DevOps and Azure Container Services (AKS), we can build DevOps for dockerized applications by leveraging docker capabilities enabled on Azure DevOps Hosted Agents. And hence has become the industry go-to service.

I automate things 😉